百家乐技巧-明陞百家乐官网娱乐城_百家乐线路图分析_全讯网官方网站 (中国)·官方网站

計(jì)算數(shù)學(xué)與控制系

副教授

SMBU

NIKITIN ALEXEY

作者:    審核:    發(fā)布時(shí)間:2021-07-20    閱讀次數(shù):

Nikitin Alexey Antonovich


Date of birth: 14 February 1983.

Address: Moscow.

Email: nikitin@cs.msu.ru, aanikitin@hse.ru

Marital status: married, two daughters, son.

I. Education

1. 2000 - 2005. Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. 2005 - 2008 postgraduate study, MSU, Computational Mathematics and Cybernetics department;

3. 2008 (april) Candidate of physical and mathematical Sciences, "Dierential equations"(01.01.02). Thesis topic: "The Third boundary condition in boundary control problems for the oscillation

equation".

II. Working Experience

1. from may 2008 to October 2013, assistant at the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

2. since October 2013, associate Professor of the chair of General mathematics at Moscow State University. M. V. Lomonosov, Computational Mathematics and Cybernetics department;

3. since September 2009, associate Professor of the Department of Higher mathematics At the faculty of economic Sciences, Higher School of Economics;

III. Publications

1. Nikitin A. A. Boundary control of an elastic force at one end of a string // Doklady Mathematics. 2006. Vol. 73, no. 1. P. 77-79;

2. Nikitin A. A. Optimization of boundary control produced by the third boundary condition // Doklady Mathematics.  2007.  Vol. 76, no. 3. P. 945947;

3. Nikitin A. A. On the mixed problem for the wave equation with the third and rst boundary conditions // Dierential Equations.  2007.  Vol. 43, no. 12. P. 17331741;? Nikitin A. A. Boundary control of the third boundary // Automation and Remote Control. 2007.  Vol. 68, no. 2. P. 320326;

4. Nikitin A. A., Kuleshov A. A. Optimization of the boundary control induced by the third boundary condition // Dierential Equations.  2008.  Vol. 44, no. 5. P. 701711;

5. A. A. Davydov, V. I. Danchenko, and A. A. Nikitin, Integral equation for stationary distributions of biological communities, Problems of Dynamic Control (Fak. Vychisl. Mat. Mat. Fiz. Mosk. Gos. Univ., Moscow, 2009), pp. 1529 [in Russian];

6. Nikitin A. A. Optimal boundary control of string vibrations by a force under elastic xing // Dierential Equations.  2011.  Vol. 47, no. 12. P. 17961805;

7. Nikitin A. A. On the existence and uniqueness of a generalized solution of the mixed problem for the wave equation with the second and third boundary conditions // Dierential Equations.  2013.  Vol. 49, no. 5. P. 645653;

8. On an Optimal Control Problem for the Wave Equation in One Space Dimension Controlled by Third Type Boundary Data // Progress in Partial Dierential Equations, Springer Proceedings in Mathematics & Statistics, chapter 10, april, 2013, p.223-238;

9. Bodrov A. G., Nikitin A. A. Qualitative and numerical analysis of an integral equation arising in a model of stationary communities // Doklady Mathematics.  2014. Vol. 89,

no. 2. P. 210213;

10. Bodrov A. G., Nikitin A. A. Examining the biological species steady-state density equation in spaces with dierent dimensions // Moscow University Computational Mathematics and Cybernetics.  2015.  Vol. 39, no. 4. P. 157162;

11. Kalistratova A. V., Nikitin A. A. Study of Dieckmann's equation with integral kernels having variable kurtosis coe?cient // Doklady Mathematics.  2016.  Vol. 94, no. 2.  P. 574577;

12. Nikitin A. A., Savostianov A. S. Nontrivial stationary points of two-species self-structuring communities // Moscow University Computational Mathematics and Cybernetics. 2017.

 Vol. 41, no. 3. P. 122129;

13. Nikitin A. A., On the closure of spatial moments in the biological model, and the integral equations to which it leads // International Journal of Open Information Technologies.  2018.  ò. 6, ? 10.  ?. 18;

14. Nikitin A. A., Nikolaev M. V. Equilibrium integral equations with kurtosian kernels in spaces of various dimensions // Moscow University Computational Mathematics and Cybernetics. 2018.  Vol. 42, no. 3. P. 105113;? Nikolaev M. V., Nikitin A. A. The Leray-Schauder principle applied to the study of a nonlinear integral equation // Dierential Equations.  2019.  Vol. 55, no. 9. P. 11641173.

15. Nikolaev M. V., Nikitin A. A. On the existence and uniqueness of the solution of a nonlinear integral equation // Doklady Mathematics.  2019.  Vol. 100, no. 2. P. 485487.

16. Galkin E. G., Zelenkov V. K., Nikitin A. A. Computer simulations and numerical methods in two-species models of the spatial community // International Journal of Open Information Technologies.  2019.  Vol. 7, no. 12. P. 1823;

17. Galkin E. G., Nikitin A. A. Stochastic geometry for population-dynamic modeling: A Dieckmann model with immovable individuals // Moscow University Computational Mathematics and Cybernetics.  2020.  Vol. 44, no. 2. P. 6168.

18. Karpov A. D., Klepov V. Y., Nikitin A. A. On mathematical visualization in education // Communications in Computer and Information Science.  2020.  Vol. 1140, no. 1. P. 1127; Participant of several dozens of International and all-Russian congresses and seminars on topics related to optimal control, dierential equations in ordinary and partial derivatives, and mathematical

modeling.

IV. Professional interests

1. Optimal control of dynamic systems;

2. Mathematical biology;

3. The problems of scientometrics;

4. Problems of mathematical education, information technologies in higher education;

關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國際大學(xué)園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號 - 粵公網(wǎng)安備44030702002529號

返回頂部
阴宅24水口| 免佣百家乐官网规则| 信阳市| 百家乐官网大娱乐场开户注册 | 卡宾娱乐| 玩百家乐官网犯法| 怎样打百家乐的玩法技巧和规则| 大发扑克网址| 娱乐网百家乐官网的玩法技巧和规则 | 大发888登陆网页游戏| 百家乐官网平台那家好| 华硕百家乐官网的玩法技巧和规则 | 大发888老虎机平台| 广州百家乐官网酒店用品制造有限公司 | 利都百家乐官网国际娱乐网| 百家乐电子发牌盒| 澳门百家乐官网出千| 澳门百家乐21点| 大发888在线娱乐城21点| 百家乐官网棋牌游戏源码| 百家乐轮盘| 博客| 澳门百家乐游戏皇冠网| 宝胜娱乐| 百家乐官网赌博软件下载| 百家乐的玩法视频| 百家乐网站加盟| 罗盘对应24宿| 最好的棋牌游戏平台| 百家乐官网经典路单| 百家乐代理在线游戏可信吗网上哪家平台信誉好安全 | 如何玩百家乐官网扑克| 百家乐没边| 百家乐官网代理网址| 百家乐官网娱乐网备用网址 | 百家乐真人斗地主| 韶山市| 带百家乐的时时彩平台| 双流县| 百家乐赌博技巧论坛| 百家乐官网怎么下注能赢|