百家乐技巧-明陞百家乐官网娱乐城_百家乐线路图分析_全讯网官方网站 (中国)·官方网站

計算數學與控制系

高級講師

SMBU

作者:    審核:    發布時間:2023-09-12    閱讀次數:

Dr. Chaikovskii Dmitrii

Senior Lecturer

Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, China.

Office: Room 333, Main Building.

Email: dmitriich@smbu.edu.cn


Education
PhD in
Applied Mathematics, East China Normal University, 2020.

MS in Mechanics and Mathematics, Lomonosov Moscow State University, 2014.

BS in Materials Science, International University Dubna, 2012.



Professional Appointments
Aug. 2023 – present, Senior Lecturer, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.
Sep. 2020 – Aug. 2023, Postdoc, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.


Fundings

Principal investigator:

?01/2024 -- 12/2025, National Natural Science Fund of China (Grant No. 12350410359), Principal Investigator, (外國學者研究基金項目, 400000 CNY).

?11/2013 -- 06/2014, Foundation for Assistance to Small Innovative Enterprises in Science and Technology (Moscow, RU), (Grant No.  726ГУ1/2013), Principal investigator.

Participant:

?01/2025--12/2026, National Natural Science Foundation of China (NSFC), 二階漸近正則化方法及其在液相 色譜反問題中的應用, (Grant No. W2421102), Participant, (面上項目, 200000 CNY).

?01/2022--12/2025, National Natural Science Foundation of China (NSFC), 液相色譜法反問題的數學建模與新正則化方法, (Grant No. 12171036), Participant, (面上項目, 510000 CNY).

? 08/2021--08/2025, Beijing Natural Science Foundation (Grant No. Z210001), Modern Regularization Methods of Inverse Problems and Their Applications, Participant, (重點項目, 2 million CNY)

? 01/2021--12/2022, Shenzhen Science and technology innovation Commission (Grant No. 20200827173701001), New algroithms of inverse problems and their applications, Participant, (穩定支持項目, 500000 CNY).

? 01/2019--12/2022, National Natural Science Foundation of China, (Grant No. 11871217), 右端不連續奇攝動系統的多尺度研究, Participant, (面上項目, 530000 CNY).



Publications (*Corresponding author)

[17] Pirutin S., Chaikovskii D*., Shank M., Chivarzin M., Jia S., Yusipovich A., Suvorov O., Zhao Y., Bezryadnov D., Rubin A. Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System. Pharmaceutics, Vol.?17, No.?4, 2025, p.?398. https://doi.org/10.3390/pharmaceutics17040398

[16] Liubavin A., Ni M., Zhang Y., Chaikovskii D*. Asymptotic Solution for Three?Dimensional Reaction–Diffusion–Advection Equation with Periodic Boundary Conditions. Differential Equations, Vol.?60, No.?9, Sep?2024, pp.?1134–1152. https://doi.org/10.1134/S0012266124090027

[15] Melnikov B., Chaikovskii D. On the Application of Heuristics of the TSP for the Task of Restoring the DNA Matrix. Frontiers in Artificial Intelligence and Applications, Vol.?385, 2024, pp.?36–44. http://dx.doi.org/10.3233/FAIA240134

[14] Melnikov B., Chaikovskii D. Pseudogeometric Version of the Traveling Salesman Problem, Its Application in Quantum Physics Models and Some Heuristic Algorithms for Its Solution. Springer Proceedings in Mathematics and Statistics, Vol.?446, 2024, pp.?391–401. http://dx.doi.org/10.1007/978-3-031-52965-8_32

[13] Bryukhanov I.A., Chaikovskii D. Role of Solid Solution Strengthening on Shock Wave Compression of [111] Copper Crystals. Journal of Applied Physics, Vol.?135, No.?22, 2024. https://doi.org/10.1063/5.0203961

[12] Melnikov B. and Chaikovskii D.*. Some General Heuristics in the Traveling Salesman Problem and the Problem of Reconstructing the DNA Chain Distance Matrix. In 2023 7th International Conference on Computer Science and Artificial Intelligence (CSAI 2023), December 08--10, 2023, Beijing, China. ACM, New York, NY, USA 8 Pages. https://doi.org/10.1145/3638584.3638607

[11] Melnikov B., Terentyeva.Yu., Chaikovskii.D.. On the application of heuristic algorithms for solving the pseudogeometric version of the traveling salesman problem for the design of communication networks.  Informatization and communication, 2023, № 4, 7-16. https://doi.org/10.34219/2078-8320-2023-14-4-7-16

[10] Lysak T., Zakharova I., Kalinovich A., and Chaikovskii D.. Self-similar light beams at the second harmonic generation in a PT-symmetry structure with strong Bragg coupling at both frequencies, Proc. SPIE 12775, Quantum and Nonlinear Optics X, 1277513 (26 November 2023). https://doi.org/10.1117/12.2686020

[9] Zakharova, I.G., Lysak, T.M., Kalinovich, A.A., Chaikovskii D.. Reflective Properties of Active Layered Media when Generating the Second Optical Harmonic. Bull. Russ. Acad. Sci. Phys. 87, 1791–1795 (2023). https://doi.org/10.1134/S1062873823704075

[8] Melnikov B, Terentyeva Y., Chaikovskii D.*. Pseudogeometric version of the traveling salesman problem: application in quantum physics models and a heuristic variant of point placement. Cybernetics and physics, Vol. 12, No. 3, 2023, 194-200. https://doi.org/10.35470/2226-4116-2023-12-3-194-200

[7] Chaikovskii D., Zhang Y.. Solving forward and inverse problems involving a nonlinear three-dimensional partial differential equation via asymptotic expansions. IMA Journal of Applied Mathematics, 2023, 88, 525-557. https://doi.org/10.1093/imamat/hxad021

[6] Chaikovskii D., Liubavin A., Zhang Y.. Asymptotic expansion regularization for inverse source problems in two-dimensional singularly perturbed nonlinear parabolic PDEs. CSIAM Transactions on Applied Mathematics, 2023, 4(4), 721-757. http://dx.doi.org/10.4208/csiam-am.SO-2022-0017

[5] Melnikov B., Zhang Y., Chaikovskii D.*. An algorithm for the inverse problem of matrix processing: DNA chains, their distance matrices and reconstructing. Journal of Biosciences and Medicines, 2023, 11, 310-320. https://doi.org/10.4236/jbm.2023.115023 

[4] Melnikov B., Zhang Y., Chaikovskii D.*. An inverse problem for matrix processing: an improved algorithm for restoring the distance matrix for DNA chains. Cybernetics and Physics, 2022, 11(4), 217–226. https://doi.org/10.35470/2226-4116-2022-11-4-217-226

[3] Chaikovskii D., Zhang Y. Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. Journal of Computational Physics, 2022, 470, 111609. https://doi.org/10.1016/j.jcp.2022.111609

[2] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed differential equation with Robin boundary value conditions. Journal of East China Normal University (Natural Science), 2020(2): 23-34. https://doi.org/10.3969/j.issn.1000-5641.201911043

[1] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed second-order quasilinear differential equation with discontinuous right-hand side with Neumann and Dirichlet boundary conditions. Austrian Journal of Technical and Natural Sciences, Vienna, 2017, 11-12: 25-31.


Teaching:

1)Introduction into specialty, seminars, faculty of CMC.

2)Algebra and geometry part 1, seminars, faculty of CMC.

3)Algebra and geometry part 2, seminars, faculty of CMC.

4)Mathematical analysis part 3, seminars, faculty of CMC.

關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
百家乐官网博娱乐网赌百家乐官网的玩法技巧和规则 | 葡京赌场| 百家乐官网大路小路三珠路| 百家乐官网小游戏单机版| 女性做生意的风水| 百家乐出千方法技巧| 百家乐庄闲排| 伟博娱乐| 百家乐官网赌场大全| 百家乐自动算牌软件| 六合彩历史开奖记录| 免费百家乐奥秘| 百家乐官方网站| 云安县| 百家乐视频游戏界面| 临澧县| 全讯网博客| 百家乐手机软件| 百家乐官网娱乐城网址| 百家乐倍投| 网上百家乐赌钱| 至尊百家乐官网贺一航| 太阳城论坛| 百家乐赢赌场百家乐| 百家乐官网解密软件| 百家乐游戏机| 做生意的风水摆件| 建湖县| 百家乐桌小| 如何玩百家乐官网游戏| 网上娱乐城注册送现金| 百家乐投注方法| 电脑版百家乐官网分析仪| 博彩娱乐网| 丹东亿酷棋牌世界官方下载| 送彩金百家乐的玩法技巧和规则| 百家乐官网桌颜色可定制| 香港六合彩特码资料| 网上百家乐是现场吗| 真人百家乐口诀| 网络百家乐官网破|