百家乐技巧-明陞百家乐官网娱乐城_百家乐线路图分析_全讯网官方网站 (中国)·官方网站

計算數學與控制系

高級講師

SMBU

作者:    審核:    發布時間:2023-09-12    閱讀次數:

Dr. Chaikovskii Dmitrii

Senior Lecturer

Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, China.

Office: Room 333, Main Building.

Email: dmitriich@smbu.edu.cn


Education
PhD in
Applied Mathematics, East China Normal University, 2020.

MS in Mechanics and Mathematics, Lomonosov Moscow State University, 2014.

BS in Materials Science, International University Dubna, 2012.



Professional Appointments
Aug. 2023 – present, Senior Lecturer, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.
Sep. 2020 – Aug. 2023, Postdoc, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.


Fundings

Principal investigator:

?01/2024 -- 12/2025, National Natural Science Fund of China (Grant No. 12350410359), Principal Investigator, (外國學者研究基金項目, 400000 CNY).

?11/2013 -- 06/2014, Foundation for Assistance to Small Innovative Enterprises in Science and Technology (Moscow, RU), (Grant No.  726ГУ1/2013), Principal investigator.

Participant:

?01/2025--12/2026, National Natural Science Foundation of China (NSFC), 二階漸近正則化方法及其在液相 色譜反問題中的應用, (Grant No. W2421102), Participant, (面上項目, 200000 CNY).

?01/2022--12/2025, National Natural Science Foundation of China (NSFC), 液相色譜法反問題的數學建模與新正則化方法, (Grant No. 12171036), Participant, (面上項目, 510000 CNY).

? 08/2021--08/2025, Beijing Natural Science Foundation (Grant No. Z210001), Modern Regularization Methods of Inverse Problems and Their Applications, Participant, (重點項目, 2 million CNY)

? 01/2021--12/2022, Shenzhen Science and technology innovation Commission (Grant No. 20200827173701001), New algroithms of inverse problems and their applications, Participant, (穩定支持項目, 500000 CNY).

? 01/2019--12/2022, National Natural Science Foundation of China, (Grant No. 11871217), 右端不連續奇攝動系統的多尺度研究, Participant, (面上項目, 530000 CNY).



Publications (*Corresponding author)

[17] Pirutin S., Chaikovskii D*., Shank M., Chivarzin M., Jia S., Yusipovich A., Suvorov O., Zhao Y., Bezryadnov D., Rubin A. Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System. Pharmaceutics, Vol.?17, No.?4, 2025, p.?398. https://doi.org/10.3390/pharmaceutics17040398

[16] Liubavin A., Ni M., Zhang Y., Chaikovskii D*. Asymptotic Solution for Three?Dimensional Reaction–Diffusion–Advection Equation with Periodic Boundary Conditions. Differential Equations, Vol.?60, No.?9, Sep?2024, pp.?1134–1152. https://doi.org/10.1134/S0012266124090027

[15] Melnikov B., Chaikovskii D. On the Application of Heuristics of the TSP for the Task of Restoring the DNA Matrix. Frontiers in Artificial Intelligence and Applications, Vol.?385, 2024, pp.?36–44. http://dx.doi.org/10.3233/FAIA240134

[14] Melnikov B., Chaikovskii D. Pseudogeometric Version of the Traveling Salesman Problem, Its Application in Quantum Physics Models and Some Heuristic Algorithms for Its Solution. Springer Proceedings in Mathematics and Statistics, Vol.?446, 2024, pp.?391–401. http://dx.doi.org/10.1007/978-3-031-52965-8_32

[13] Bryukhanov I.A., Chaikovskii D. Role of Solid Solution Strengthening on Shock Wave Compression of [111] Copper Crystals. Journal of Applied Physics, Vol.?135, No.?22, 2024. https://doi.org/10.1063/5.0203961

[12] Melnikov B. and Chaikovskii D.*. Some General Heuristics in the Traveling Salesman Problem and the Problem of Reconstructing the DNA Chain Distance Matrix. In 2023 7th International Conference on Computer Science and Artificial Intelligence (CSAI 2023), December 08--10, 2023, Beijing, China. ACM, New York, NY, USA 8 Pages. https://doi.org/10.1145/3638584.3638607

[11] Melnikov B., Terentyeva.Yu., Chaikovskii.D.. On the application of heuristic algorithms for solving the pseudogeometric version of the traveling salesman problem for the design of communication networks.  Informatization and communication, 2023, № 4, 7-16. https://doi.org/10.34219/2078-8320-2023-14-4-7-16

[10] Lysak T., Zakharova I., Kalinovich A., and Chaikovskii D.. Self-similar light beams at the second harmonic generation in a PT-symmetry structure with strong Bragg coupling at both frequencies, Proc. SPIE 12775, Quantum and Nonlinear Optics X, 1277513 (26 November 2023). https://doi.org/10.1117/12.2686020

[9] Zakharova, I.G., Lysak, T.M., Kalinovich, A.A., Chaikovskii D.. Reflective Properties of Active Layered Media when Generating the Second Optical Harmonic. Bull. Russ. Acad. Sci. Phys. 87, 1791–1795 (2023). https://doi.org/10.1134/S1062873823704075

[8] Melnikov B, Terentyeva Y., Chaikovskii D.*. Pseudogeometric version of the traveling salesman problem: application in quantum physics models and a heuristic variant of point placement. Cybernetics and physics, Vol. 12, No. 3, 2023, 194-200. https://doi.org/10.35470/2226-4116-2023-12-3-194-200

[7] Chaikovskii D., Zhang Y.. Solving forward and inverse problems involving a nonlinear three-dimensional partial differential equation via asymptotic expansions. IMA Journal of Applied Mathematics, 2023, 88, 525-557. https://doi.org/10.1093/imamat/hxad021

[6] Chaikovskii D., Liubavin A., Zhang Y.. Asymptotic expansion regularization for inverse source problems in two-dimensional singularly perturbed nonlinear parabolic PDEs. CSIAM Transactions on Applied Mathematics, 2023, 4(4), 721-757. http://dx.doi.org/10.4208/csiam-am.SO-2022-0017

[5] Melnikov B., Zhang Y., Chaikovskii D.*. An algorithm for the inverse problem of matrix processing: DNA chains, their distance matrices and reconstructing. Journal of Biosciences and Medicines, 2023, 11, 310-320. https://doi.org/10.4236/jbm.2023.115023 

[4] Melnikov B., Zhang Y., Chaikovskii D.*. An inverse problem for matrix processing: an improved algorithm for restoring the distance matrix for DNA chains. Cybernetics and Physics, 2022, 11(4), 217–226. https://doi.org/10.35470/2226-4116-2022-11-4-217-226

[3] Chaikovskii D., Zhang Y. Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. Journal of Computational Physics, 2022, 470, 111609. https://doi.org/10.1016/j.jcp.2022.111609

[2] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed differential equation with Robin boundary value conditions. Journal of East China Normal University (Natural Science), 2020(2): 23-34. https://doi.org/10.3969/j.issn.1000-5641.201911043

[1] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed second-order quasilinear differential equation with discontinuous right-hand side with Neumann and Dirichlet boundary conditions. Austrian Journal of Technical and Natural Sciences, Vienna, 2017, 11-12: 25-31.


Teaching:

1)Introduction into specialty, seminars, faculty of CMC.

2)Algebra and geometry part 1, seminars, faculty of CMC.

3)Algebra and geometry part 2, seminars, faculty of CMC.

4)Mathematical analysis part 3, seminars, faculty of CMC.

關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
百家乐强弱走势| 百家乐沙| 最好的百家乐官网投注| 百家乐园蒙| 百家乐赌博工具| 百家乐博彩开户博彩通| 百家乐官网线上真人游戏| 皇冠网足球开户| 水果机教程| 威尼斯人娱乐场安全吗| 伯爵百家乐娱乐平台| 百家乐投注信用最好的| 现金百家乐网上娱乐| 百家乐的分析| 运城百家乐蓝盾| 太阳城娱乐管理网| 大发888电话| 百家乐视频游戏双扣| 百家乐官网正网| 做生意讲究风水吗| 百家乐官网赌台| 百家乐官网真人游戏娱乐场| 门源| 百家乐官网视频官网| 招远市| 十六浦娱乐城官网| 大发888下载官方| 卢克索百家乐的玩法技巧和规则 | 百家乐倍投工具| 大发888官方 df888| 澳门葡京赌场图片| 大发888被查封| 大发888冲值| 维多利亚娱乐| 大发888在线娱乐| 皇冠足球开户| 百家乐官网赌术大揭秘| 百家乐如何投注法| 新兴县| 百家乐官网与龙虎斗怎么玩| 百家乐官网开发公司|