百家乐技巧-明陞百家乐官网娱乐城_百家乐线路图分析_全讯网官方网站 (中国)·官方网站

計算數學與控制系

高級講師

SMBU

胡盛清

作者:    審核:    發布時間:2024-09-05    閱讀次數:

胡盛清(Shengqing Hu)


Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, P.R. China.

Office: Room 334, Main Building.

Email: hushengqing@smbu.edu.cn


Educational Background

vSep. 2013 - Jul. 2018, PhD. in School of Mathematical Sciences, Peking University. Supervisor: Professor Bin Liu. 

vSep. 2016 - Sep. 2017, Visiting PhD. student in Brigham Young University, Salt Lake City, USA. Co-advisor: Professor Kening Lu.

vSep. 2009 - Jun. 2013, B.S. in School of Mathematics, Sichuan University.


Working Experience

vSep. 2024 - Present, Senior Lecturer, Shenzhen MSU-BIT University.

vApr. 2021 - Aug. 2024, Research Assistant Professor, The Chinese University of Hong Kong, Shenzhen.

vSep. 2018 - Mar. 2021, Postdoctoral Fellowship, Nanjing University. Co-advisor: Professor Chongqing Cheng.

Research interests

    Differential equations and Dynamical systems, KAM theory, Hamiltonian and reverisble systems, Schr?dinger operater, Hamiltonian PDE

Publications and Preprints

[1]  S. Hu, J. Zhang. Response solutions for finite smooth harmonic oscillators with quasi-periodic forcing, Discrete and Continuous Dynamical Systems. 44(5): 1267-1286, 2024.

[2]  S. Hu. Quasi-periodic solutions for quasi-periodic forced Schr?dinger equation with finite smoothness. SIAM Journal on Applied Dynamical Systems. 22(3), 1945-1982, 2023.

[3]  S. Hu, Z. Lin, D. Wang, X. Wang. An unconditional stable threshold dynamics method for the willmore flow. Japan Journal of Industrial and Applied Mathematics. 40(3), 1519-1546, 2023.

[4]  J. Hong, W. Cheng, S. Hu, K. Zhao. Representation formula for contact type Hamilton-Jacobi equations. Journal of Dynamics and Differential Equations. 34(3), 2315-2327, 2022.

[5]  S. Hu, J. Zhang. Almost periodic solutions in forced harmonic oscillators with infinite frequencies. Qualitative Theory of Dynamical Systems. 21(105), 2022.

[6] S. Hu. Persistence of invariant tori for almost periodically forced reversible systems. Discrete and Continuous Dynamical Systems. 40(7), 4497-4518, 2020.

[7] S. Hu,B. Liu. Completely degenerate lower-dimensional invariant tori for Hamiltonian system. Journal of Differential Equations. 266(11), 7459-7480, 2019.

[8]  S. Hu. The existence of invariant tori in reversible mappings. Acta Mathematica Sinica, English seres. 35(9), 1419-1452, 2019.

[9]  S. Hu,B. Liu. Degenerate lower dimensional invariant tori in reversible systems, Discrete and Continuous Dynamical Systems. 38(8), 3735-3763, 2018.


Fundings

[1] Youth Program of National Natural Science Foundation of China, ( Grant No.12201532), RMB 300 K, 2023-2025.

[2]  Shenzhen Science and Technology Innovation Program, (Grant No. RCBS20210609103231040), RMB 300 K, 2022-2024.

[3]  Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515111068), RMB 100 K, 2021-2024.

[4]  Shenzhen Scientific research support for Post-doctor, RMB 300 K, 2021-2024.

[5]  China Postdoctoral Science Foundation Funded Project (Grant No. 003056), RMB 80 K, 2019-2020.


Talks

[1] Jul 28-30, 2024, Quasi-periodic solutions for Schr?dinger equations with finite smooth forcing, seminars on Anderson localization and KAM theory, Sichuan University, Chengdu, P. R. China.

[2] May 12-18, 2024, Long time stability of KAM tori for the derivative nonlinear Schr?dinger equations, seminars on new trends in dynamical systems, Tianyuan Mahtematics Research Center, Kunming, P. R. China.

[3] Jan 12-15, 2024, Long time stability of KAM tori for the derivative nonlinear Schr?dinger equations, Seminars on Hamiltonian systems and variational theory, Nanjing University, Nanjing, P. R. China.

[4] July 19-21, 2022, Quasi-periodic solutions for almost periodically forced harmonic oscillators, Seminars on differential equations and dynamical systems, Capital nomal University, Online.

[5] July 13-15, 2022, Quasi-periodic solutions for Schr?dinger equations with finite smooth forcing, Seminars on Hamilton dynamical systems, Nanjing University, Online.

[6] Octorber 11-13, 2019, The existence of degenerate lower dimensional invariant tori, Seminars on differential equations and dynamical systems, Nankai University, Tianjing, P. R. China.


關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
威尼斯人娱乐城老| 百家乐官网必赢术| 百家乐电脑游戏机投注法实例| 百家乐大赌城| 百家乐官网免费破解外挂| 百家乐官网牌具公司| 网上百家乐真实度| 花莲市| 打百家乐最好办法| 百家乐官网神仙道官网| 百家乐赌现金| 678百家乐官网博彩娱乐平台| 威尼斯人娱乐城 2013十一月九问好 | 亚洲顶级赌场 塑造品牌神话| 罗盘24方位| 缅甸百家乐官网赌博现场下载| 最新棋牌游戏| 澳门百家乐免费开户| 百家乐官网单打| 百家乐官网国际娱乐平台| 百家乐官网自动投注| 大发888娱乐城游戏| 百家乐ipone| 风水做生意房漏水| VIP百家乐官网-挤牌卡安桌板| 博亿线上娱乐城| 百家乐红桌布| 澳门百家乐娱乐城打不开| 百家乐官网特殊技巧| 金臂百家乐官网注册送彩金| 大发888游戏平台dafa 888 gw| 八大胜百家乐娱乐城| 百家乐为什么庄5| 网上百家乐哪家较安全| 玩百家乐官网去哪个平台好| 百家乐官网破解视频| 河北区| 百家乐官网是骗人的么| 嬴澳门百家乐官网的公式| 天地人百家乐官网现金网| 炉霍县|